•研究论文•

普鲁士蓝类配位聚合物 KCd[Cr(CN)₆]•H₂O 的合成、 结构及多孔性能研究

楚超霞"袁爱华*." 刘文艳" 沈湘黔 孟献丰 b

("江苏科技大学材料科学与工程学院 镇江 212003) (*江苏大学材料科学与工程学院 镇江 212003)

摘要 以 Cd²⁺和[Cr(CN)₆]³⁻为建筑基元通过自组装合成普鲁士蓝类配位聚合物 KCd[Cr(CN)₆]•H₂O (1•H₂O),并用红外 光谱、元素分析、单晶 X 射线衍射、粉末 X 射线衍射、热重分析和氮气吸附脱附等手段对其进行了表征. 配位聚合物 1•H₂O 属于面心立方晶系, 空间群 *Fm*-3*m*, 晶胞参数: *a*=*b*=*c*=1.09059 mn, *α*=*β*=*y*=90°. 配位聚合物 1•H₂O 是由 K⁺, Cd²⁺, [Cr(CN)₆]³⁻离子和一个结晶水分子组成的三维多孔结构. 热重分析结果表明失水样品 1 的骨架结构在 120~ 200 ℃之间保持稳定. 氮气吸附脱附研究表明: 失水样品 1 具有 683.6 m²·g⁻¹ 的比表面积, 氮气最大吸附量为 8.83 $mmol \cdot g^{-1}$.

关键词 氰基桥联; 配位聚合物; 合成; 晶体结构; 吸附脱附

Synthesis, Structure and Porous Properties of Prussian Blue Analogue Coordination Polymer KCd[Cr(CN)₆]•H₂O

CHU, Chao-Xia^a YUAN, Ai-Hua^{*,a} LIU, Wen-Yan^a SHEN, Xiang-Qian^b MENG, Xian-Feng^b

(^a School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003) (^b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212003)

Abstract A Prussian blue analogue coordination polymer, $KCd[Cr(CN)_6] \cdot H_2O$ (1·H₂O), has been synthesized based on Cd^{2+} and $[Cr(CN)_6]^{3-}$ as building blocks, which has been characterized by IR spectrum, elemental analysis, single crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, and N₂ adsorption and desorption measurements. 1•H₂O belongs to cubic system with space group Fm-3m, and cell parameters: a=b=c=1.09059 mn, and $\alpha=\beta=\gamma=90^{\circ}$. The structure of 1•H₂O consists of K⁺, Cd²⁺, $\left[Cr(CN)_{6}\right]^{3-}$ and one lattice water molecule, which forms a three-dimensional porous structure. Thermogravimetric analysis indicates that the framework of the dehydrated samples 1 is stable between 120 and 200 $^\circ\!\mathrm{C}$. N₂ adsorption and desorption studies suggest that the dehydrated samples 1 possesses surface area of $683.6 \text{ m}^2 \cdot \text{g}^{-1}$ and the maximum adsorption of 8.83 mmol $\cdot \text{g}^{-1}$.

Keywords cyano-bridge; coordination polymer; synthesis; crystal structure; adsorption and desorption properties

普 鲁 士 蓝 类 配 位 聚 合 物 的 常 见 组 成 为 : Cs⁺; M=Mn, Co, Ni, Cu, Zn, Cd; M'=Fe, Co), 由于它

 $C_m M_x [M'(CN)_6]_v \cdot nH_2O$ 和 $M_3 [M'(CN)_6]_2$ (C=Na⁺, K⁺, 们具有优异的磁性质和电子特性而被广泛研究^[1,2], 如

^{*} E-mail: aihuayuan@163.com Received July 20, 2008; revised August 25, 2008; accepted September 28, 2008. 江苏省教育厅自然科学基金(No. 07KJB150030)资助项目.

磁相变^[3,4]、光诱导磁学^[5]、湿度诱导磁极倒置^[6]、自旋 交叉^[7]、键合异构与磁性的相关性^[8]、溶剂化磁性诱导 法拉第效应^[9]和电荷转移^[10]等.最近,普鲁士蓝类配位 聚合物的储气性能开始被研究,如 M₃[Co(CN)₆]₂ (M= Mn, Fe, Co, Ni, Cu, Zn)^[11,12], Ga[Co(CN)₆], Fe₄[Fe(CN)₆]₃ 和 M₂[Fe(CN)₆] (M=Mn, Co, Ni, Cu, Zn, Cd)的储氢性 能^[13], M₃[M'(CN)₆]₂ (M=Mn, Co, Ni, Cu, Zn, Cd; M'= Fe, Co)对 N₂, CO₂和 H₂O 的储存性能^[14,15]等.

普鲁士蓝类配位聚合物的典型结构为以[M(CN)₆]³⁻ 为构筑基元的简单立方(α-Po型)网络结构,其氰基与六 配位的过渡金属离子线性桥联从而形成孔洞骨架结 构^[16].在立方结构中,过渡金属离子均处于孔的表面, 并与孔内的客体分子发生相互作用.在与可再生能源相 关的技术领域中,这种中等强度的主客体相互作用适用 于气体的吸附脱附循环过程^[12].与其它纳米多孔材料 相比(例如沸石),普鲁士蓝类配位聚合物具有更低的骨 架密度、更高的比表面积^[17]和较低的吸附焓^[18,19],因此, 这些材料更适合于大容量气体的储存^[17].

到目前为止,尽管普鲁士蓝类配位聚合物的研究已 取得了较大的进展,但得到结构表征的普鲁士蓝类配位 聚合物的数量非常有限^[2,20],而且以[Cr(CN)₆]³⁻为前驱 体的普鲁士蓝类配位聚合物的储气性能研究仍未见报 导.

最近,我们以 Cd²⁺与[Cr(CN)₆]³⁻为前驱体,通过自 组装成功得到了一个具有三维多孔结构的普鲁士蓝类 配位聚合物 KCd[Cr(CN)₆]•H₂O (1•H₂O).本文报道其合 成、晶体结构和吸附脱附性质,并讨论吸附脱附性能与 晶体结构的相关性.

1 实验部分

1.1 试剂与仪器

所有试剂均为分析纯,除特别注明以外,其它试剂 均 未 进 一 步 提 纯 . 实 验 所 用 水 均 为 去 离 子 水, K₃[Cr(CN)₆]按文献[21]合成.

元素分析采用 Perkin-Elmer 240C 型元素分析仪; ICP 测试采用 JY38S 电感耦合等离子质谱仪;单晶结构 测定用 SMART 1000 X 射线单晶衍射仪;红外光谱测定 用 Nicolet FT-1703x 红外光谱仪(KBr 压片),测试范围在 400~4000 cm⁻¹之间进行;TG/DTA 测定用 PE 公司的 Pyris Diamond 热分析仪,测试条件:升温区间从室温到 750 ℃左右,升温速率为1 ℃•min⁻¹;变温粉末 X 射线 衍射在 AXS 公司的 D8 ADCANCE 型多晶 X 射线衍射 仪上进行,测试条件:管压 40 kV,管流 30 mA,测定范 围 5°~50°,速率 2 (°)•min⁻¹,扫描模式 $\theta \sim 2\theta$ 连续扫描, 粉末样品在常温常压下抽真空得失水相 KCd[Cr(CN)₆], 随后在真空条件下自室温加热至 130 ℃; 吸附脱附实 验在 NOVA2000e 比表面积和孔隙率分析仪上进行.

1.2 KCd[Cr(CN)6]的合成

1.2.1 单晶 1•H₂O 的培养

取 K₃[Cr(CN)₆] (0.0326 g, 0.10 mmol)和 CdSO₄•8/3 H₂O (0.0313 g, 0.15 mmol)分别置于 20 mL 的大瓶和 2 mL 小瓶中,再向大小瓶中加入 20 mL 的去离子水,室 温下避光放置,两者通过大小瓶溶液缓慢扩散法,两周 后得到透明的黄色立方块晶体.元素分析结果: Anal. calcd for KCdCrC₆N₆H₂O: Cd 29.80, Cr 13.79, C 19.09, H 0.54, N 22.27; found Cd 29.78, Cr 13.76, C 19.07, H 0.55, N 22.25.

1.2.2 粉末样品 1•7H₂O 的制备

在搅拌条件下,将K₃[Cr(CN)₆] (0.6520 g, 2.0 mmol)的水溶液缓慢滴加到 CdSO₄•8/3H₂O (0.5120 g, 2.0 mmol)的水溶液中,滴加完毕后再继续搅拌 1 h,然后静置,抽滤.所得浅黄色沉淀用去离子水洗涤 3~5 次,抽滤后自然风干,产率为 75%.元素分析结果: Anal. calcd for KCdCrC₆N₆H₁₄O₇: Cd 23.17, Cr 10.72, C 14.84, H 2.89, N 17.31; found Cd 23.15, Cr 10.70, C 14.81, H 2.91, N 17.29.

1.3 晶体结构测定

选取尺寸为 0.11 mm×0.11 mm×0.11 mm 的晶体 在 SMART 1000 X 射线单晶衍射仪上收集晶体衍射数 据,采用石墨单色化 Mo Ka 射线(λ =0.71073 Å),以 ω 扫描方式在 3.2°~27.7°范围内共收集 2172 个衍射点, 其中独立衍射点 1271 个(R_{int} =0.097),全部强度数据均 经 L_p 因子和经验吸收校正.晶体结构由直接法解出,所 有非氢原子的坐标用全矩阵最小二乘法进行各向异性 温度因子修正.所有氢原子坐标由理论加氢程序找出, 这些氢原子的坐标和各向同性温度因子参加结构计算. 全矩阵最小二乘法精修基于 F^2 .对 2459 个 $I>2\sigma(I)$ 的独 立可观测点数据,最终偏离因子 R_1 =0.0392, wR_2 = 0.0832, S=1.01, w=1/[$S^2(F_o^2)$ +(0.05P)²+1.99P],其中 P=(F_o^2 +2 F_c^2)/3, 残余电子密度($\Delta\sigma$)_{max}=0.87 e·Å⁻³, ($\Delta\sigma$)_{min}=-0.53 e·Å⁻³. 全部计算在 PIII-450 机上用 SHELXTL 结构解析程序完成.

2 结果与讨论

2.1 红外光谱

配位聚合物 $1 \cdot H_2O$ 的红外光谱测定在 $400 \sim 4000$ cm⁻¹之间进行,在 2163 cm⁻¹ 处有一个很强的氰基吸收

峰,与 K₃[Cr(CN)₆]的端基氰基的伸缩振动吸收峰(2130 cm⁻¹)相比,向高频方向移动(蓝移),表明氰基与 Cd²⁺离子发生了桥联,这可由其晶体结构得以证实.此外, 3500 cm⁻¹ 左右的较宽的吸收峰为水分子的伸缩振动吸收峰.

2.2 粉末 X 射线衍射

图 1 为粉末样品 1•7H₂O XRD 谱图与单晶 1•H₂O 模 拟 XRD 谱图的对比,两者的峰位完全吻合,这表明粉 末样品与单晶样品具有相同的物相结构.图 2 为粉末样 品的变温 XRD 谱图,抽真空条件下,粉末样品的含水 相全部失水得到失水样品 1,且 1 在 33~130 ℃之间的 峰位基本一致.这表明:在该条件下,失水样品 1 仍保 持着三维骨架结构.

图 1 单晶模拟 X 射线衍射谱图(a)和粉末样品 X 射线衍射谱 图(b)

Figure 1 Stimulated pattern from single crystal X-ray diffraction (a) and powder X-ray diffraction pattern from powder samples (b)

Figure 2 VT-PXRD of powder samples

2.3 热重分析

图 3 为粉末样品 1•7H₂O 的热重曲线, 失水过程分 两步进行: 第一个阶段在 30~75 ℃之间失重率为 23.57%, 失去 6 个表面吸附水; 第二阶段在 75~120 ℃ 之间失重率为 3.23%, 失去一个结晶水, 略小于理论值 3.70%. 120~200 ℃之间, 失水样品 1 基本保持稳定, 这 表明失水样品 1 的三维骨架为刚性结构, 具有潜在的吸 附脱附性质. 200 ℃以上, 失水样品 1 的三维骨架开始分 解.

图 3 粉末样品 1•7H₂O 的热重曲线 Figure 3 TG curve of powder samples 1•7H₂O

2.4 晶体结构分析

配位聚合物 **1**•H₂O 的化学式为 KCdCrC₆N₆H₂O, M_r = 377.64, 该晶体属立方晶系, 空间群 *Fm*-3*m*, 晶胞参 数: a=b=c=1.09059 nm, $\alpha=\beta=\gamma=90^\circ$. V=1.29713 nm³, Z=4, $D_c=1.934$ g•cm⁻³, F(000)=716, μ (Mo K α)= 2.785 mm⁻¹. 配位聚合物 **1**•H₂O 的非氢原子坐标和热参 数列于表 1, 部分键长和键角列于表 2, 图 4 和图 5 分别 为配位聚合物 **1**•H₂O 的非对称单元和立方晶格.

表1 1-H₂O的非氢原子坐标和热参数

Table 1 Non-hydrogen atomic coordinates and displacement parameters for $1{\mathebase}{\rm H}_2O$

Atom	x	у	Ζ	$U(eq)/(Å^3)$
K(1)	0.25	0.25	0.75	0.039(3)
O(1)	0.25	0.25	0.75	0.039(3)
Cd(1)	0	0.5	0	0.0342(12)
Cr(1)	0	0	0	0.0343(17)
C(1)	0	0.189	0	0.056(5)
N(1)	0	0.294	0	0.055(5)

配位聚合物 **1**•H₂O 的非对称结构单元由 K⁺, Cd²⁺, [Cr(CN)₆]³⁻离子和一个结晶水分子组成, K⁺在结构中起 到平衡电荷的作用,其中 K和 O 各占 0.499,且(*x/a, y/b*, *z/c*: 0.25, 0.25, 0.75). 从图 5 中可以看出,中心 Cd 原子 和 Cr 原子均处于八面体的六配位环境之中,其中 C—N

	表2 1・	H ₂ O的部分	↑键长(nm)和键角(°)	
Table 2	Selected bo	ond distance	es and angles of $1 \cdot H_2 C$)
Cd(1)—N(1)	0.224(6)	N(1)—C(1)	0.115(3)
Cr(1)—C(1)	0.206(2)		
N(1)-C	C(1)— $Cr(1)$	180.00(1)	C(1)—N(1)—Cd(1)	180.00(1)

图 4 1•H₂O 的不对称单元 Figure 4 Asymmetric unit of coordination polymer 1•H₂O

图 5 1•H₂O 的立方晶格 Figure 5 Cubic lattice of 1•H₂O

键、Cd—C 键和 Cr—N 键的平均键长分别为 0.1147 nm, 0.2246 nm 和 0.2060 nm. 每个 Cd 原子通过[Cr(CN)₆]³⁻ 中的六个氰基与周围相邻的六个 Cr 原子相连,而每个 Cr 原子也通过 6 个氰基与相邻的 6 个 Cd 原子相连,最 终形成了一个三维的面心立方结构.

2.5 吸附脱附性质的研究

将 0.151 g 粉末样品 1•7H₂O 置于测试用的玻璃管 中,密封,然后在抽真空条件下 75 ℃保温 1 h 得到失水 样品 1 (0.112 g),失重率为 25.8%,与理论失重率为 25.9%一致;液氮气氛冷却下,在 273 K 恒温条件下进 行吸附脱附实验.

图 6 为失水样品 1 的氦气吸附等温线,属第 I 类型 吸附等温线.当 P_r =0.983929 时,失水相对氦气的吸附 量达到最大值 197.9697 mL•g⁻¹ (8.83 mmol•g⁻¹).吸附 和脱附等温线基本上是吻合的,这表明氦气吸附脱附过 程基本是可逆的.

表 3 为氮气的吸附比表面积和脱附比表面积数据, 表 4 中为孔体积和孔径数据.根据 BET 模型计算得到的 比表面积为 $683.6 \text{ m}^2 \cdot \text{g}^{-1}$,这比普鲁士兰配位聚合物的 比表面积 49 m² · g⁻¹ ^[11]要大很多,略小于 Jeffrey 报道的 Mn₃[Co(CN)₆]₂ 的比表面积(870 m² · g⁻¹)和分子筛 Y 的比 表面积 904 m² · g⁻¹ ^[11].

图 6 失水样品 1 对 N₂ 的吸附脱附图

Figure 6 Adsorption and desorption curves of the dehydrated samples 1 for N_2

表	3	失水	、样品	1	的	比表	面	积	数	据	
•	a	c		c	.1	1 1	1		1		

Table 3 Surface area of the dehydrated sample	s 1	1
--	-----	---

Surface area/ $(m^2 \cdot g^{-1})$	
MultiPoint BET	683.6
BJH method cumulative adsorption surface area	11.47
BJH method cumulative desorption surface area	13.24
DH method cumulative desorption surface area	13.59
DH method cumulative adsorption surface area	11.97

表4 失水样品1的孔体积和孔径数据

Table 4Pore volume data and pore size data of the dehydratedsamples 1

Pore Volume Data/($cc \cdot g^{-1}$)				
Total pore volume for pores with diameter	0.3062			
less than 1214.83 Å at $p/p_0 = 0.983929$				
BJH method cumulative adsorption pore volume	0.01397			
BJH method cumulative desorption pore volume	0.01808			
DH method cumulative adsorption pore volume	0.01400			
DH method cumulative desorption pore volume	0.01779			
HK method cumulative pore volume	0.02906			
Pore size data/Å				
Average pore diameter	1.792e+01			
BJH method adsorption pore diameter (Mode)	3.072e+01			
BJH method desorption pore diameter (Mode)	3.412e+01			
DH method adsorption pore diameter (Mode)	3.072e+01			
DH method desorption pore diameter (Mode)	2.412 ± 01			
Die method dependent pore diameter (mode)	3.4120 ± 01			
DA method pore diameter (Mode)	1.340e + 01			

从表 3 和 4 中发现, 无论按照 BJH 方法还是 DH 方 法, 脱附过程中的比表面积、孔体积和孔径数据都比吸 附过程的要大, 这表明失水样品 1 在保持其三维骨架结 构稳定性的同时还表现出一定的伸缩性. 另外, 根据公 式 V_1 =1.547×10⁻³ V_g 可将最大气态氮的吸附体积 197.9697 mL·g⁻¹ 折算成液态氮的吸附体积为 0.3062 mL·g⁻¹, 由此可估算出失水样品 1 的孔体积大小约为 0.3062 mL·g⁻¹. 再根据液态氮的摩尔体积(34.6525 mL·mol⁻¹)可以计算出失水样品 1 的一个单元晶胞可容 纳 3.17 个液态氮; 同理, 根据液态水的摩尔体积(18.06 mL·mol⁻¹)也可以计算出失水样品 1 的一个单元晶胞可 容纳 6.1 个水分子, 这与粉末样品 1 的一个单元晶胞可 容纳 6.1 个水分子, 这与粉末样品 1 可作为多孔材料潜在 地应用于气体储存领域.

3 结论

本文合成并测定了 KCd[Cr(CN)₆]•H₂O (1•H₂O)的晶 体结构,该晶体属面心立方晶系.变温粉末 X 射线衍射 和热重分析结果表明失水样品 1 在 120~200 ℃之间其 三维骨架基本保持稳定.氮气的吸附脱附实验结果表 明,失水样品 1 具有 683.6 m²•g⁻¹比表面积,对氮气的最 大吸附量为 8.83 mmol•g⁻¹,其孔体积对氮气具有较高 的孔可达性;在吸附脱附的过程中,失水样品 1 在保持 其三维骨架结构稳定性的同时还表现出一定的伸缩性. 因此,失水样品 1 可作为多孔材料潜在地应用于气体储 存领域.

References

- Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Villain, F. *Coord. Chem. Rev.* **1999**, *190*~ *192*, 1023.
- 2 Ohba, M.; Okawa, H. Coord. Chem. Rev. 2000, 198, 313.

- 3 Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdaguer, M. *Nature* 1995, 378, 701.
- 4 Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593.
- 5 Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704.
- 6 Ohkoshi, S.; Arai, K.; Sato, Y.; Hashimoto, K. Nat. Mater. 2004, 3, 857.
- 7 Kosaka, W.; Nomura, K.; Hashimoto, K.; Ohkoshi, S.-I. J. Am. Chem. Soc. 2005, 127, 8590.
- 8 Coronado, E.; Giménez-López, M. C.; Levchenko, G.; Romero, F. M.; García-Baonza, V.; Milner, A.; Paz-Pasternak, M. J. Am. Chem. Soc. 2005, 127, 4580.
- 9 Sato, Y.; Ohkoshi, S.-I.; Arai, K.-I.; Tozawa, M.; Hashimoto, K. J. Am. Chem. Soc. 2003, 125, 14590.
- Bhattacharjeea, A.; Sahab, S.; Konerb, S.; Ksenofontova,
 V.; Reimana S.; Gütlicha, P. J. Magn. Magn. Mater. 2006,
 302, 173.
- 11 Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 6506.
- Chapman, K. W.; Southon, P. D.; Weeks, C. L.; Kepert, C. J. Chem. Commun. 2005, 3322.
- 13 Kaye, S. S.; Long, J. R. Catal. Today 2007, 120, 311.
- 14 Balmaseda, J.; Reguera, E.; Rodri'guez-Herna'ndez, J.; Reguera, L.; Autie, M. *Microporous Mesoporous Mater*. 2006, 96, 222.
- 15 Roque, J.; Reguera, E.; Balmaseda, J.; Rodri'guez-Herna'ndez, J.; Reguera, L.; Castillo, L. F. *Microporous Mesoporous Mater.* 2007, 103, 57.
- 16 Mullica, D. F.; Milligan, W. O.; Beall, G. W.; Reeves, W. L. Acta Crystallogr. B 1978, 34, 3558.
- 17 Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M.; *Nature* 2004, 427, 523.
- 18 Balmaseda, J.; Reguera, E.; Gomez, A.; Roque, J.; Vazquez, C.; Autie, M. J. Phys. Chem. B 2003, 107, 11360.
- 19 Culp, J. T.; Matranga, C.; Smith, M.; Bittner, E. W.; Bockrath, B. J. Phys. Chem. B 2006, 110, 8325.
- 20 Dong, W.; Zhang, W.; Yan, O.-Y.; Zhu, L.-N., Liao, D.-Z.; Yoshimurac, K.; Jiang, Z.-H.; Yan, S.-P.; Cheng P. J Magnet. Magnet. Mater. 2006, 24954.
- Ferlay, S.; Mallah, T.; Ouahe's, R.; Veillet, P.; Verdaguer, M. *Inorg. Chem.* **1999**, *38*, 229.

(A0807202 SUN, H. P.; LU, Z. S.)