三维蜂窝状配位聚合物 { Ni (tn)] Ni (CN) }]·2H₂O } 的合成、 晶体结构及磁性质

袁爱华 a,b 汪 萍 b 李 逵 b 杨绪杰 a

("南京理工大学材料化学实验室 南京 210094) (^b 华东船舶工业学院材料科学与工程学院 镇江 212003) (^c 中国科学院成都有机化学研究所 成都 610040)

摘要 将 N(m) (ClQ₄) 的水溶液和 K_ N(CN)]·H₂O 的水溶液在 U 形管中通过扩散反应,得到了一种结构新颖的三维蜂 窝状配位聚合物 { N(m) N(CN)]·2H₂O }(m为1,3-丙二胺).该化合物属单斜晶系,空间群为 C2/c,晶胞参数为 a = 1.2014(2) nm, b = 0.8942(2) nm, c = 1.2645(3) nm, $a = 90^\circ$, $\beta = 108.76(2)^\circ$, $\gamma = 90^\circ$, V = 1.2863(5) nm³ 和 Z = 4.该化合物由四配位 Ni 与六配位 Ni 通过氰根离子桥联而形成三维无限伸展的蜂窝状结构,其中四配位的 N(2)离子为 C 配位平面 四方构型,六配位的 N(1)离子为 N 配位八面体构型.变温磁化率测定表明,在分子内部存在弱的反铁磁相互作用. 关键词 配位聚合物 /氰基桥联,晶体结构,磁性质

Synthesis , Crystal Structure and Magnetic Properties of a New Three-dimensional Cyanide-bridged Coordination Polymer , { Ní tn) I Ní CN }]· 2H₂O }_n

YUAN , Ai-Hua a , b \qquad WANG , Ping^{b} \qquad LI , Kui^{b} \qquad YANG , Xu-Jie a

WANG , Xin^a LU , Lu-De * , a YU , Kai-Bei c

(^a Material Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094)

(^b School of Material Science and Technology, East China Shipbuilding Institute, Zhenjiang 212003)

(^c Analysis Center , Chengdu Branch of Chinese Academy of Sciences , Chengdu 610040)

Abstract A new three-dimensional cyanide-bridged coordination polymer, $\{ I, Ni(n) \}$ Ni(CN), $\} \cdot 2H_2O \}_n$ (where tn = 1,3-diaminopropane), has been prepared from the reaction of $[Ni(n) CO_4]_2]$ with K₂[Ni(CN), $] \cdot H_2O$ in water. The compound crystallizes in the monoclinic space group C2/c with the cell dimensions of a = 1.2014(2) nm, b = 0.8942(2) nm, c = 1.2645(3) nm, $a = 90^\circ$, $\beta = 108.76(2)^\circ$, $\gamma = 90^\circ$, V = 1.2863(5) nm³ and Z = 4. The compound assumes a three-dimensional honeycomb-like structure. Magnetic susceptibility measurements indicate the presence of a weak intramolecular antiferromagnetic interaction.

Keywords polynuclear complex , cyanide-bridged , crystal structure , magnetic property

分子基磁性材料是近年来新兴的热门课题¹¹,其中氰 根桥联配位聚合物是一类重要的分子基磁体,人们对氰根桥 联配位聚合物进行了广泛的研究,并取得了令人振奋的进 展^[2-4].氰基桥联配位聚合物的合成设计是基于所谓的砖块 与泥灰的办法.通常以包含过渡金属中心原子的配合物为砖 块,以氰基配合物阴离子为泥灰,通过自组装反应获得 1D, 2D,3D 氰基桥联配位聚合物.平面四方结构的[N(CN),]⁻ 离子虽是抗磁性离子,但它也可作为基块用来合成分子磁性 材料,主要用于探讨磁交换作用机理.人们已对四氰合镍配 位聚合物体系进行了大量的研究,报导了一系列化合物,如

 ^{*} E-mail: Yah888@public.zj.js.cn
 Received October 10, 2003; revised December 15, 2003; accepted February 20, 2004.
 江苏省教育厅自然科学基金(No. 01KJB150010)资助项目.

一维的[Ni(en),][Ni(CN),]·5H₂O(en = 1, 2ethanediamine)^{5]}, [Ni(pn), INi(CN),]·5H₂O(pn = 1, 2diaminopropane)^{6]}, [Ni(hmtd), INi(CN),](hmtd = *N*-meso-5, 7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11diene)⁷等;二维的[Cu(NH₃),Ni(CN),]^[8], [Mn(salen)]. [Ni(CN),]·H₂O^[9], [Fe(salen)][Ni(CN),]^{10]}等;三维结构 的四氰合镍配位聚合物非常罕见.Čemák 课题组以CuSO₄, m和K[N(CN),]反应制得了两种结构、组成截然不同的化合 物[Cu(m)][N(CN),]^{11]}和[Cu(m),·N(CN),]·4H₂O^[12],其中 [Cu(m)][N(CN),]^{11]}和[Cu(m),·N(CN),]·4H₂O^[12],其中 [Cu(m)][N(CN),]^{11]}和[Cu(m),·N(CN),]·4H₂O, 则不是配 位聚合物.最近,我们以N(ClO₄),·6H₂O,代替CuSO₄ 通过自组 装反应得到了一个结构新颖的三维蜂窝状配位聚合物{[Ni-(m)][N(CN),]·2H₂O}, 本文报道其合成、结构和磁性质.

1 实验部分

1.1 试剂及仪器

实验中所用试剂均为分析纯,所用蒸馏水为二次蒸馏 水.元素分析(C,H,N)采用 Perkin-Elmer 240 C型元素分析 仪.镍的分析使用 Jarrell-Ash 1100 + 2000 电感耦合等离子直 读光谱仪(ICP) 红外光谱采用 Nicolet FT-1703X 红外光谱仪 (KBr 压片),热分析采用美国 Perkin-Elmer 公司的 DSC-2C 示 差扫描量热仪,测试在氮气气流中进行,升温速度 10 °C/ min.磁化率测量在 1 T的外场中, $5 \sim 300$ K 温度范围内使用 MPMS-5 SQUID 磁强计测量.抗磁性校正使用 Pascal's 常数, 有效磁矩通过方程 $\mu = 2.828(\chi_m \times T)^{1/2}$ 计算,其中 χ_m 是 摩 尔磁化率.

1.2 { N(tn) N(CN)]·2H2O } 的制备

1.2.1 [Ní(tn)] ClO₄) 的合成

称取 0.3657 g N(ClO₄)2·6H₂O 溶于少量水中得蓝色溶 液 并与 0.074 g 1 ,3-丙二胺溶于少量水而形成的溶液反应 得深蓝色 N(tn) ClO₄)2 溶液.

1.2.2 【N(tn)】N(CN)] ?H₂O}, 的制备

将 N(m) 【 ClO₄) 溶液置于 U 型管的一端,另一端加入 K [N(CN)] 水溶液,以琼脂为填料,通过扩散,约一个半月后析出大量蓝色块状晶体 【 N(m) I N(CN)] · 2H₂O }_n.
IR ν_{C=N} ^{氣基}) : 2158 (vs) cm⁻¹. Anal. calcd for C₇H₁₄N₆Ni₂O₂ : C 25.35, H 4.26, N 25.35, Ni 35.39; found C 25.34, H 4.25, N 25.37, Ni 35.42.

2 结果与讨论

2.1 【N(tn)】N(CN)] ? 2H₂O}, 的红外光谱分析

配位聚合物 {[N(m)]] N(CN),]·2H₂O }, 的红外光谱测 定范围在 400~4000 cm⁻¹,在 2000~2200 cm⁻¹范围有一强的 氰基特征吸收峰(2158 cm⁻¹),这与 K₂[N(CN),]中的氰基吸 收峰(2122 cm⁻¹)⁵相比向高波数方向移动了,这表明与其 它氰基桥联配合物相类似,配位聚合物{[N{m)]N(CN}]} 2H₂O}, 中的氰基已发生了桥联.一般,氰基是一个强的 σ -给 体和弱的 π -受体,故结果使氰基的键强增强,氰基中的伸缩 频率 $\nu_{C=N(\overline{n}\overline{k})}$ 向高频方向移动.红外光谱中氰基吸收峰为 尖单峰,说明[N(CN), 站构单元中的四个氰基是等价的,均 发生了桥联,这已为晶体结构所证实.

2.2 【N(tn) N(CN)] ?2H2O}, 的差热分析

图 1 为 { N(m) I N(CN),]·2H₂O }, 的热重 – 差热曲线, 由图可见,该化合物在室温至 120 ℃为失水过程,DTA 曲线有 一宽的吸收峰,TG 曲线失重为 11%,与理论值一致,无水化合 物 { N(m) I N(CN),]}, 在 120~350 ℃温度区间稳定存在, 350 ℃以后开始分解,350~600 ℃为样品的多步分解过程,分 解情况比较复杂,由图可见在此温度区间未能形成稳定的中 间产物,最终分解产物有待粉末衍射进一步确证.

图 1 《 N(tn) I N(CN),]·2H₂O },的 TG-DTA 曲线 Figure 1 Curve of TG-DTA for complex 《 Ni(tn) I Ni(CN),]· 2H₂O },

将尺寸为 0.40 mm×0.32 mm×0.30 mm 的 { N(tn) I Ni-(CN),]·2H₂O}, 单晶置于 Siemens P4 X 射线四圆衍射仪上, 用经过石墨单色器单色化的 Mo Kα(λ = 0.071073 nm)X 射 线作为入射射线,用 Bruker XSCANS 程序测定,在 2.9° $\leq \theta \leq$ 26°的范围内,以 ω 扫描方式共收集衍射强度数据 1475 个, 其中独立衍射点 1260 个[*R*(int)=0.0335].全部强度数据均 经过 LP 因子和经验吸收因子校正,晶体结构由直接法解出. 配合物的所有非氢原子的坐标用矩阵最小二乘法进行各向 异性温度因子修正.氢原子坐标按理想几何位置插入.这些 氢原子的坐标和各向同性温度因子参加结构计算,但不参加 修正.全矩阵最小二乘精修基于 *F*²,精修参数数目为 102 个.最终偏离因子 *R*₁ = 0.0317, *wR*₂ = 0.0726.所有计算在 PC-586 微机上用 SHELXTL 结构解析程序进行.

2.4 { N(tn) N(CN),] 2H₂O), 的晶体结构

配合物 {[N(m)]] N(CN),]·2H₂O }, 的晶体学数据见表 1,主要键长和键角见表 2.

表 1 配位聚合物 {[N(tn)]] N(CN)₄]·2H₂O }_n 的晶体学数据 **Table 1** Crystal data of coordination polymer {[N(tn)][N(CN)₄]·

$2H_2O_n$			
化学式	$\mathrm{C_7H_{14}N_6Ni_2O_2}$	γ/(°)	90
式量	331.66	V/nm ³	1.2683(5)
晶系	单斜		4
空间群	C2/c	$D_{\rm c}$ (g·cm ⁻³)	1.713
a/nm	1.2014(2)	F(000)	680
b/nm	0.8942(2)	$R_{\rm int}$	0.0335
c∕nm	1.2645(3)	R_1	0.0317
α/(°)	90	wR_2	0.0726
β/(°)	108.76(2)	GOF	0.8780

配位聚合物由基本单元[N(m)]N(CN),]·2H₂O构成, 单元结构图见图 2,由图可见中心 N(1)离子与一个1,3-丙 二胺中的两个 N原子配位,另有四个氰根离子的四个 N氮 原子与其配位,因此 N(1)离子是六配位的八面体结构;另 一中心离子 N(2)分别与四个氰根离子中的四个 C原子配 位,为四配位的平面四方结构.

图 2 配位聚合物 { N(m) I N(CN)]]·2H₂O }, 的单元结构 图

Figure 2 Molecular structure of the complex $\{ N_1 \in \mathbb{N} \setminus \mathbb{N} \setminus \mathbb{N} \setminus \mathbb{N} \setminus \mathbb{N} \setminus \mathbb{N} \}$ 2H₂O $\}_n$

图 3 是标题化合物沿 b 轴方向的俯视图 ,由图可见 ,四 配位的 N(2)离子与六配位的 N(1)离子通过氰根离子桥联 交替排列而形成二维网络结构 ,其中四配位 Ni 离子所连接 的四个氰根离子位于同一平面内 ,而六配位 Ni 离子所连的 四个氰根离子不在同一平面 .图 3 还标出了水分子 ,每四个 水分子组成一个菱形四边形.

图 4 是标题化合物沿 c 轴方向的俯视图.由于六配位的 Ni 离子所连四个氰根离子不在同一平面,其无限伸展导致 整个结构呈现比较复杂的三维交错立体结构.为了清晰可 见 图 4 中省去了 1 .3-丙二胺分子.从 c 方向俯视 整个分子 呈菱形网格结构,每个菱形的四条边由 Ni(1)—N—C— N(2)—C—N构成,且为交错排列.菱形网格的中间包含一 个蜂窝状分子通道,该通道由两个六配位 Ni、四个四配位 Ni 通过氰根离子桥联交错排列而成,蜂窝通道的最短距离(两 个六配位 Ni 原子之间的间距)为 0.8827 nm, 蜂窝通道的最 长距离(两个 N 原子之间的距离)为 0.9061 nm, 1 ,3-丙二胺 对称分布在蜂窝通道的两侧.由于 1 ,3-丙二胺为单键组成的 大环,而且蜂窝通道的孔径较大,故六配位 Ni 所连的一个 1 ,3-丙二胺由于热运动而处于无序震荡状态(见图 3).该化 合物的结构非常新颖,至今尚未发现类似的报道.

图 3 配位聚合物 {[N(tn)][N(CN)₄]·2H₂O }_n 沿 b 轴方向的 俯视图

Figure 3 Projection of the complex $\{ Ni(tn) \mid Ni(CN)_{4} \}$ 2H₂O $_{b}(view from b axis)$

图 4 配位聚合物 {[N(tn)][N(CN)]]·2H₂O}, 沿 c 轴方向的 俯视图(图中省去了 1,3-丙二胺分子)

Figure 4 Packing of the complex $\{I, NI, tn\}$ NI, $(CN)_4] \cdot 2H_2O_n$ (view from c axis)

2.5 { N(tn) I N(CN)]·2H₂O },的磁性质

标题化合物的变温磁化率(5~300 K)在 SQUID 仪上测定,外场为1 T,其 $\chi_{M} \sim T Q \chi_{M} T \sim T$ 曲线见图 5.配合物在 300 K时的 $\chi_{M} T$ 值为1.17 cm³·K·mol⁻¹(有效磁矩 μ_{eff} =3.05 μ_{B}),该值比磁稀释 N(S=1) N(S=0)单元对应的纯自旋 $\chi_{M} T$ 值 1.0(μ_{eff} =2.83 μ_{B})稍大(计算值设 g_{Ni} =2.00).当温 度降低时, $\chi_{M} T (\mu_{eff})$ 值基本保持不变,直至 14 K 后 $\chi_{M} T$ (μ_{eff})逐渐减小 5 K时降至 0.97 cm³·K·mol⁻¹(2.78 μ_{B}).根据 居里 – 外斯定律 $\chi_{M} = C (T - \theta)$ 利用 $1/\chi_{M} \sim T$ 直线可拟合 得到外斯常数 θ = -0.79 K(R=0.99999),表明配合物中存 在弱的反铁磁相互作用.由于[N(CN)]³ P⁻是抗磁性的,由氰 基桥联的N(S=1)-N(S=0)之间的磁交换相互作用可

表 2 配位聚合物 {[N(tn)][N(CN),] ·2H2O }, 的主要键长(nm)和键角(°)

Table 2 Selected bond lengths (nm) and bond angles (°) of coordination polymer $\{ N_{k} (tn) | N_{k} (CN)_{k} \}$

0	,	,	2 11
N(1)—N(1')	0.2085(4)	N(1)—N(2)	0.2088
N(1)—N(1)	0.2088(4)	N(1)—N(3)	0.2103(3)
N(2)((4)#2	0.1861(4)	N(2)((4)#3	0.1861(4)
N(2)-((3)	0.1875(4)	N(2)((3)	0.1143(5)
N(3)((4)	0.1153(5)	N(1)((1))	0.1482(5)
((1)-((2))	0.1535(5)	((2)-((1')	0.1534(5)
((1')—N(1')	0.1474(5)	((4)—N(2)# 5	0.1861(4)
N(1')—N(1)—N(1)# 1	89.2(6)	N(1')—N(1)—N(2)	175.8(5)
N(1')#1—N(1)—N(2)	91.2(3)	N(2)—N(1)—N(2)#1	88.74(19)
N(1')—N(1)—N(1)# 1	6.0(6)	N(2)—N(1)—N(1)#1	173.1(4)
N(1')—N(1)—N(1)	95.0(2)	N(1')#1—N(1)—N(1)	6.0(6)
N(2)—N(1)—N(1)	85.3(3)	N(1)#1-N(1)-N(1)	100.9(6)
N(1')—N(1)—N(3)# 1	85.5(5)	N(2)—N(1)—N(3)#1	90.38(13)
N(1)—N(1)—N(3)#1	89.3(5)	N(1')—N(1)—N(3)	90.0(5)
N(2)—N(1)—N(3)	94.16(13)	N(1)-N(1)-N(3)	86.7(5)
N(3)#1—N(1)—N(3)	173.65(19)	((4)#2-N(2)-((4)#3	180.00(17)
((4)#2—N(2)—((3)	87.37(16)	((4)#3—N(2)—((3)	92.63(16)
((3)#4—N(2)—((3)	180.0	((3)—N(2)—N(1)	179.7(3)
((4)—N(3)—N(1)	166.4(3)	((1)-N(1)-N(1)	116.4(7)
N(1)-((1)-((2)	111.8(10)	((1')-((2)-((1)	111.3(8)
N(1')((1')((2)	112.6(10)	((1')-N(1')-N(1)	123.8(9)
N(2)((3)N(2)	177.4(3)	N(3)((4)N(2)#5	176.8(3)

图 5 配位聚合物 { N₁ (tn)] N₁ (CN) }]· 2H₂O } 的变温磁化 率(χ_M ~ T)和磁矩(χ_{MT} ~ T)图

Figure 5 Temperature-dependence of magnetic susceptibility $\chi_{\rm M} \sim T$ and the effective magnetic moment $\chi_{\rm MT} \sim T$ for complex { Ni-(tn)] N(CN),]·2H₂O},

以忽略不计,但 N(S = 1)之间可通过 N(CN)。³ ⁻ 桥联而发 生反铁磁偶合作用.由于相邻的 N(S = 1)—N(S = 1)间距 离较大,故反铁磁相互作用较弱.该配合物在较低温度下有 效磁矩减小,其原因主要有二:一是八面体的 N(II)离子之 间通过 N(CN)。³ ⁻ 传递极弱的反铁磁偶合,二是八面体的 N(II)离子(S = 1)的零场分裂(D),而后者可能是主要原因, 这方面的工作有待进一步研究.

References

- 1 Cheng, P.; Liao, D.-Z. Chin. J. Chem. 2001, 19, 208.
- 2 Ohba, M.; Okawa, H. Coord. Chem. Rev. 2000, 198, 313.
- Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.;
 Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.;
 Grade, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet,
 P.; Cartier, C.; Villain, F. Coord. Chem. Rev. 1999, 190 ~ 192, 1023.
- Čerňák, J.; Orendac, M.; Potočňák, I.; Chomi, J.;
 Orendáčová, A.; Skoršepa, J.; Feher, A. Coord. Chem. Rev.
 2002, 224, 51.
- 5 Yuan, A. H.; Yang, X. J.; Liu, X. H.; Yu, K. B.; Lu, L. D. Chin. J. Inorg. Chem. 2003, 19, 865(in Chinese).
 (袁爱华,杨绪杰,刘孝恒,郁开北,陆路德,无机化学学报,2003,19,865.)
- 6 Zhan, S. Z.; Guo, D.; Zhang, X. Y.; Du, C. X.; Zhu, Y. Inorg. Chem. Acta 2000, 298, 57.
- 7 Gainsford , G. J. ; Curtis , N. F. Aust. J. Chem. **1984** , 37 , 179.

- 8 Janiak, C.; Wu, H. P.; Klufers, P.; Mayer, P. Acta Crystallogr., Sect. C 1999, C55, 1966.
- 9 Yuan , A. H. ; Shen , X. P. ; Wu , Q. J. ; Huang , Z. X. ; Xu ,
 Z. J. Corrd. Chem. 2002 , 55 , 411.
- Yuan , A. H. ; Shen , X. P. ; Yu , K. B. ; Lu , L. D. ; Zhou ,
 W. ; Zhong , J. J. Acta Chim. Sinica 2003 , 61 , 1603 (in

Chinese).

(袁爱华,沈小平,郁开北,陆路德,周伟,钟娟娟,化学学报,2003,61,1603.)

- 11 Čerňák , J. ; Lipkowski , J. Monatsh. Chem. 1999 , 130 , 1195.
- 12 Čerňák , J. ; Lipkowski , J. ; Potočňák , I. ; Hudák , A. Monatsh . Chem. 2001 , 132 , 193.

(A0310103 PAN, B. F.; ZHENG, G. C.)