•研究论文•

(H₂teta)₂{[Ni(teta)][Fe(CN)₆]₂}•17H₂O (teta = 5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)超分子化合物的合成、 晶体结构和磁性质研究

袁爱华*,^a 沈小平^b 周虎^a 陆路德^c

(*江苏科技大学材料科学与工程学院 镇江 212003) (*江苏大学化学化工学院 镇江 212013) (*南京理工大学材料化学实验室 南京 210094)

摘要 将 Ni(teta)(ClO₄)₂ (teta=5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)的 DMF 溶液和 K₃[Fe(CN)₆] 的水溶液在填充了琼脂冻胶的 U 型管中通过扩散反应,得到了标题化合物(H₂teta)₂{[Ni(teta)][Fe(CN)₆]₂}•17H₂O,该化 合物晶体属三斜晶系,空间群 $P\overline{1}$,晶胞参数为 a=0.9998(2) nm, b=1.5514(3) nm, c=1.6647(4) nm, a=114.15(2)°, β = 100.91(2)°, γ =93.42(2)°, V=2.2863(10) nm³, z=1, D_c =1.196 g•cm⁻³, F(000)=890, μ =5.84 cm⁻¹, GOF=0.894, R_1 = 0.0582, wR_2 =0.1446 [I>2 σ (I)].该化合物的基本单元由 2 个[H₂teta]²⁺阳离子、1 个{[Ni(teta)][Fe(CN)₆]₂}⁴⁻阴离子和 17 个水分子组成,它们之间通过 N—H···N 氢键而形成具有二维平面结构的超分子化合物. 1.8~300 K 变温磁化率研究表 明,化合物中三核体系 Fe (s=1/2)-Ni (s=1)-Fe (s=1/2)中心原子间通过氰基桥联而发生强的铁磁相互作用,磁参数 J= 4.33 cm⁻¹, g=2.6, θ =60 K.通过 TG-DTG 测定了配合物的热稳定性. **关键词** [Ni(teta)]²⁺; 氰基桥联;超分子化合物; 晶体结构; 磁性质

Synthesis, Crystal Structure and Magnetic Property of a Supermolecule $(H_2 \text{tet}a)_2 \{ [Ni(\text{tet}a)] [Fe(CN)_6]_2 \} \cdot 17H_2O \ (\text{tet}a = 5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane}) \}$

YUAN, Ai-Hua^{*,a} SHEN, Xiao-Ping^b ZHOU, Hu^a LU, Lu-De^c (^a School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003) (^b School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013) (^c Material Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094)

Abstract The title compound $(H_2 \text{tet} a)_2 \{[\text{Ni}(\text{tet} a)][\text{Fe}(\text{CN})_6]_2\} \cdot 17\text{H}_2\text{O}$ was obtained by slow diffusion of an aqueous solution of $K_3[\text{Fe}(\text{CN})_6]$ and a DMF solution of $[\text{Ni}(\text{tet} a)](\text{CIO}_4)_2$ through a U-tube containing agar at room temperature. The compound crystallizes in the triclinic space group $P\overline{1}$ with a=0.9998(2) nm, b=1.5514(3) nm, c=1.6647(4) nm, $a=114.15(2)^\circ$, $\beta=100.91(2)^\circ$, $\gamma=93.42(2)^\circ$, V=2.2863(10) nm³, z=1, $D_c=1.196$ g·cm⁻³, F(000)=890, $\mu=5.84$ cm⁻¹, GOF=0.894, $R_1=0.0582$, $wR_2=0.1446$ [$I>2\sigma(I)$]. Its structure consists of two cations of $[\text{H}_2 \text{tet} a]^{2+}$, one trinuclear anion of $\{[\text{Ni}(\text{tet} a)][\text{Fe}(\text{CN})_6]_2\}^{4-}$ and seventeen water molecules, which are held together by the N—H···N hydrogen bonds to form a two-dimensional supramolecule. The variable temperature magnetic susceptibility, measured in the $1.8 \sim 300$ K range, indicates the presence of a strong ferromagnetic interaction through the cyanide bridge in trinuclear system

^{*} E-mail: aihuayuan@163. com

Received February 18, 2005; revised April 26, 2005; accepted June 8, 2005. 江苏省自然科学基金(No. BK2005056)资助项目.

Fe (s=1/2)-Ni (s=1)-Fe (s=1/2) with magnetic parameters J=4.33 cm⁻¹, g=2.6, $\theta=60$ K. The thermal stability of the complex was studied by TG-DTG.

Keywords [Ni(tet*a*)]²⁺; cyano-bridged; supramolecule; crystal structure; magnetic property

分子磁性材料的设计与合成多年来一直是化学和 材料科学的研究热点[1~3],其中氰基桥联室温分子基磁 体和变磁材料的研究近年来取得了令人振奋的进展[4,5]. 氰基合金属阴离子,如[Ni(CN)4]²⁻, [Fe(CN)6]³⁻, [Cr(CN)₆]³⁻等,可作为建筑基元与过渡金属的配合物 [ML]ⁿ⁺(L=大环有机配体, M=Cu^{II}, Ni^{II}, Mn^{II/III}, Fe^{II/III} 等)进行组装, 形成具有多维结构的配位聚合物或超分 子化合物[6~10]. 另外, 在晶体工程领域, 人们尝试用氢 键来控制分子在晶体中的排列和取向, 氢键独特的强度 和取向对分子结构多样性的产生具有重要的意义, 许多 结构新颖的超分子化合物都是通过氢键而形成的[11]. Colacio 等^[12,13]利用[Fe(CN)₆]³⁻和[Ni(CTH)]²⁺为建筑基 元通过溶液反应得到了两种不同的配位聚合物,分别是 一维链状配合物{[Ni(rac-CTH)]₃[Fe(CN)₆]₂}₄ (rac-CTH= rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)和二维蜂窝状配合物[Ni(CTH)]₃[Fe(CN)₆]₂• $13H_2O$ (CTH = d, l-5, 7, 7, 12, 14, 14-hexamethyl-1, 4, 8, 11tetraazacyclotetradecane)、并报道了其磁性质. 最近、我 们利用 $[Fe(CN)_6]^{3-}$ 和 $[Ni(teta)]^{2+}$ 为建筑基元,通过自组 装反应成功地制得了一个新型氰基桥联双金属三核化 合物(H₂teta)₂{[Ni(teta)][Fe(CN)₆]₂}•17H₂O (teta = 5,7,7, 12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), 该 化合物通过氢键形成二维超分子.本文报道其合成、晶 体结构和磁性质.

1 实验部分

1.1 试剂和仪器

所有试剂均为分析纯,没有进一步提纯.大环配体 teta 按文献[14]合成,Ni(teta)(ClO₄)₂ 按文献[15]方法制 得.

C, H, N 元素含量用 Perkin-Elmer 240C 型元素分析 仪测定, Fe, Ni 元素含量使用 Jarrell-Ash 1100+2000 电 感耦合等离子直读光谱仪(ICP)测定,单晶在 Siemens P4 X 射线四圆衍射仪上测定,化合物的红外光谱测定采用 Nicolet FT-170SX 红外光谱仪(KBr 压片),磁性质在 Quantum Design MPMS-XL SQUID 仪上测定,化合物的 热稳定性测量采用 Perkin-Elmer TG/DTA 6300型热分析 仪.

1.2 标题化合物的合成

取 0.10 g Ni(teta)(ClO₄)₂溶于 5 mL DMF 得橙红色 溶液, 另取 0.10 g K₃[Fe(CN)₆]溶于 5 mL H₂O 中得黄色 溶液, 两者在填充了琼脂冻胶的 U 型管中通过缓慢扩散 反应得红棕色块状单晶. Anal. calcd for C₆₀H₁₄₆Fe₂N₂₄Ni-O₁₇: C 43.77, H 8.94, N 20.42, Ni 3.56, Fe 6.78; found C 43.68, H 8.98, N 20.47, Ni 3.57, Fe 6.72. IR $v_{C=N}$: 2115.15 (vs), 2154.1 (w) cm⁻¹.

1.3 晶体结构测定

选取大小为 0.54 mm×0.40 mm×0.38 mm 的晶体 用于单晶结构分析, 晶体衍射数据在 Siemens P4 四圆衍 射仪上收集, 采用石墨单色化 Mo Kα 射线(λ =0.071073 nm), 以*ω*扫描方式在 1.52°< θ <25.00°的范围内共收集 衍射强度数据 8310 个, 其中独立衍射点为 7566 个 [R_{int} =0.0253]. 全部强度数据均经过 LP 因子和经验吸 收因子校正, 晶体结构由直接法解出. 配合物的所有非 氢原子的坐标用矩阵最小二乘法进行各相异性温度因 子修正. 氢原子坐标按理想几何位置插入. 这些氢原子 的坐标和各向同性温度因子参加结构计算, 但不参加修 正. 全矩阵最小二乘法精修基于 F^2 , 最终偏离因子 R_1 = 0.0582, wR_2 =0.1446, 残余电子密度($\Delta\sigma$)_{max}=1187 e• nm⁻³, ($\Delta\sigma$)_{min}=-334 e•nm⁻³. 所有计算在 P2 微机上用 Bruker SHELXTL 结构解析程序进行.

2 结果与讨论

2.1 红外光谱

标题化合物的红外光谱在 400~4000 cm⁻¹ 范围内 测定,在2115.7 cm⁻¹处有一很强的氰基吸收峰,对应于 配 合 物 中 的 端 基 氰 基 的 伸 缩 振 动 吸 收 峰 ,与 K_3 [Fe(CN)₆]中的氰基吸收峰(2118 cm⁻¹)相近.另外配合 物在 2154.1 cm⁻¹处还有一弱的吸收峰,可归因于配合 物中桥联氰基伸缩振动吸收峰.桥联氰基的吸收峰向高 频方向移动主要与配体 CN 的 π-酸性质有关,反馈电子 效应使得桥式 CN 的伸缩振动频率普遍高于端式 CN 的 相应频率,这已为大量报道所证实.

2.2 热稳定性

在升温速率为 20.0 •min⁻¹, 氮气保护下研究标题 化合物的热稳定性, 其 TG-DTG 曲线如图 1 所示. 从图

中可以看出,配合物的分解明显的分为四个阶段.第一 阶段失去 11 个结晶水,分解温度范围为 24~55.5(峰 温)~75 ,失重率为 12.0% (理论值 12.3%);第二阶段 失去6个结晶水,分解温度范围为 244~274(峰温)~296

,失重率为 6.0% (理论值 6.6%);第三阶段失去 2 个 H₂teta 分子,分解温度范围为 296~333(峰温)~425 , 失重率为 35.1% (理论值 34.8%);第四阶段为三核体系 [Ni(teta)][Fe(CN)₆]₂的分解,分解温度范围为 425~535 (峰温)~800 ,残余率为 21.2%. 热分析结果与配合物 的晶体结构分析相符.

2.3 晶体结构

晶体结构分析表明,标题化合物化学式为 $C_{60}H_{146}Fe_2N_{24}NiO_{17}, M_r = 1646.42$,该晶体属三斜晶系, 空间群 $P\overline{1}$,晶胞参数: a = 0.9982(2) nm, b = 1.5514(3)nm, c = 1.6674(4) nm, $a = 114.15(2)^\circ$, $\beta = 100.91(2)^\circ$, $\gamma = 93.42(2)^\circ$, V = 2.2863(10) nm³, $D_c = 1.196$ g·cm⁻³, Z =1, F(000) = 890, GOF = 0.894, $\mu = 5.84$ cm⁻¹. 标题化合物的非氢原子坐标及热参数列于表 1,标题化合物的部 分键长和键角的数据列于表 2,图 2 为标题化合物的原 子标示图,图 3 为标题化合物的晶胞堆积图.

表 1 标题化合物的非氢原子坐标(×10⁴)和各向同性热参数 (10^{5} nm^{2})

Table 1	Atomic	coordinates	$(\times 10^{4})$	and	equivalent	isotropic
displacement parameters (10 ⁵ nm ²) for the title compound						

Atom	x	У	Ζ	U(eq)
Ni	0	0	0	37(1)
Fe	1101(1)	1444(1)	3462(1)	34(1)
O(1)	1224(5)	2498(3)	7329(2)	67(1)
O(2)	5148(5)	1662(5)	2323(4)	95(2)
O(3)	3674(6)	3391(5)	8679(4)	130(2)
O(4)	4642(10)	3593(6)	10456(6)	144(2)
O(5)	6035(7)	4581(5)	8773(4)	147(2)

				续表
Atom	x	У	Z	U(eq)
O(6)	388(8)	4328(5)	8442(4)	169(3)
O(7)	3952(11)	2771(7)	1555(8)	180(3)
O(8)	2020(20)	-4836(11)	2196(15)	127(5)
O(9)	1778(15)	3389(12)	2012(10)	178(7)
O(10)	2782(11)	5503(9)	9582(7)	111(3)
N(1)	-766(5)	-1219(3)	86(3)	58(1)
N(2)	1794(4)	-498(3)	-356(3)	58(1)
N(3)	895(4)	677(3)	1418(3)	50(1)
N(4)	1230(5)	2126(4)	5495(3)	71(1)
N(5)	274(5)	-649(3)	3106(3)	66(1)
N(6)	1847(6)	3541(4)	3794(4)	76(2)
N(7)	-1975(5)	1657(4)	3051(4)	71(1)
N(8)	4135(5)	1113(3)	3713(3)	59(1)
N(9)	6024(4)	-126(3)	3998(3)	43(1)
N(10)	3507(4)	-1013(3)	4057(3)	41(1)
N(11)	-1805(5)	4387(3)	5037(3)	49(1)
N(12)	-1098(4)	5425(3)	4115(3)	48(1)
C(1)	-2699(6)	-308(5)	273(4)	71(2)
C(2)	-1906(7)	-1000(5)	520(5)	82(2)
C(3)	186(8)	-1793(5)	316(5)	86(2)
C(4)	1268(8)	-1973(5)	-209(5)	94(2)
C(5)	2378(6)	-1230(4)	-115(3)	58(2)
C(6)	-440(9)	-2615(5)	437(5)	112(3)
C(7)	3383(8)	-1690(6)	-681(5)	108(3)
C(8)	3257(8)	-755(6)	852(4)	103(3)
C(9)	999(5)	993(3)	2176(3)	40(1)
C(10)	1187(5)	1864(4)	4741(3)	48(1)
C(11)	581(5)	126(4)	3240(3)	42(1)
C(12)	1593(5)	2756(4)	3674(3)	50(1)
C(13)	-830(5)	1581(3)	3214(3)	45(1)
C(14)	3025(5)	1270(3)	3647(3)	39(1)
C(15)	7332(5)	1227(4)	5383(3)	52(1)
C(16)	7423(5)	324(4)	4596(3)	53(1)
C(17)	5969(5)	-994(4)	3136(3)	48(1)
C(18)	4488(5)	-1491(4)	2730(3)	50(1)
C(19)	3753(5)	-1870(3)	3280(3)	47(1)
C(20)	6541(6)	-714(4)	2494(4)	67(2)
C(21)	2390(6)	-2497(4)	2651(4)	70(2)
C(22)	4641(6)	-2459(4)	3641(4)	66(2)
C(23)	-32(6)	4272(4)	6207(4)	62(2)
C(24)	-1260(6)	3763(4)	5454(4)	60(2)
C(25)	-3074(5)	3952(4)	4299(4)	53(1)
C(26)	-3420(5)	4637(4)	3873(4)	60(2)
C(27)	-2388(6)	4878(4)	3399(4)	58(2)
C(28)	-4264(6)	3679(5)	4633(5)	94(2)
C(29)	-3033(7)	5517(5)	2963(5)	91(2)
C(30)	-2054(7)	3975(4)	2696(4)	82(2)

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

表2 标题化合物的部分键长(nm)和键角(°)

Table 2 Selected bond distances (nm) and angles (°) for the title compound					
Ni—N(1)	0.2067(4)	N(11)—C(24)	0.1477(6)		
Ni—N(2)	0.2087(4)	N(11)—C(25)	0.1485(6)		
Ni—N(3)	0.2130(4)	N(12)—C(23)#3	0.1469(7)		
Fe—C(9)	0.1940(5)	N(12)—C(27)	0.1504(6)		
Fe—C(10)	0.1937(5)	C(1)—N(2)#1	0.1441(7)		
Fe—C(11)	0.1942(5)	C(1)—C(2)	0.1514(8)		
Fe—C(12)	0.1933(6)	C(3)—C(4)	0.1484(9)		
Fe—C(13)	0.1940(5)	C(3)—C(6)	0.1491(8)		
Fe—C(14)	0.1942(5)	C(4)—C(5)	0.1490(9)		
N(1)—C(3)	0.1445(8)	C(5)—C(7)	0.1517(8)		
N(1)—C(2)	0.1447(7)	C(5)—C(8)	0.1523(8)		
N(2)—C(1)#1	0.1441(7)	C(15)—C(16)	0.1498(7)		
N(2)—C(5)	0.1469(7)	C(17)—C(20)	0.1497(7)		
N(3)—C(9)	0.1133(5)	C(17)—C(18)	0.1518(7)		
N(4)—C(10)	0.1142(6)	C(18)—C(19)	0.1538(7)		
N(5)—C(11)	0.1140(6)	C(19)—C(22)	0.1526(7)		
N(6)—C(12)	0.1154(6)	C(19)—C(21)	0.1539(7)		
N(7)—C(13)	0.1150(6)	C(23)—C(24)	0.1482(7)		
N(8)—C(14)	0.1146(6)	C(25)—C(28)	0.1513(8)		
N(9)—C(16)	0.1491(6)	C(25)—C(26)	0.1522(7)		
N(9)—C(17)	0.1503(6)	C(26)—C(27)	0.1527(8)		
N(10)—C(15)#2	0.1483(6)	C(27)—C(30)	0.1519(7)		
N(10)—C(19)	0.1500(6)	C(27)—C(29)	0.1553(7)		
	100.0(2)		124.070		
N(1) - N(1) = N(1) = N(1)	180.0(2)	C(3) - C(4) - C(5)	124.9(6)		
$N(2) - N_1 - N(2) = 1$	180.0(3)	N(2) - C(5) - C(4)	111.0(5)		
$N(1)$ — N_1 — $N(2)$	95.05(18)	N(2) - C(5) - C(7)	111.6(5)		
$N(1)#1-N_1-N(2)$	84.95(18)	C(4) - C(5) - C(7)	110.2(5)		
$N(1)$ — N_1 — $N(3)$	91.34(17)	N(2) - C(5) - C(8)	109.3(5)		
$N(2) - N_1 - N(3)$	94.85(17)	C(4) - C(5) - C(8)	110.5(6)		
$N(3) - N_1 - N(3) \# 1$	180.0(2)	C(7) - C(5) - C(8)	104.0(5)		
C(12)—Fe— $C(10)$	89.7(2)	N(3)— $C(9)$ —Fe	175.7(4)		
C(12)—Fe— $C(9)$	91.6(2)	N(4) - C(10) - Fe	178.8(5)		
C(10)—Fe— $C(9)$	178.7(2)	N(5)—C(11)—Fe	179.7(5)		
C(12)—Fe— $C(13)$	89.3(2)	N(6)—C(12)—Fe	178.0(5)		
C(10)—Fe— $C(13)$	91.9(2)	N(7)—C(13)—Fe	178.8(5)		
C(9)—Fe— $C(13)$	88.0(2)	N(8)—C(14)—Fe	175.8(5)		
C(12)—Fe— $C(11)$	179.2(2)	N(10)#2-C(15)-C(16)	110.3(4)		
C(10)—Fe—C(11)	90.6(2)	N(9)—C(16)—C(15)	110.1(4)		
C(9)—Fe— $C(11)$	88.12(19)	C(20)—C(17)—N(9)	110.2(4)		
C(13)—Fe—C(11)	90.0(2)	C(20)—C(17)—C(18)	111.7(4)		
C(12)—Fe—C(14)	91.4(2)	N(9)—C(17)—C(18)	108.7(4)		
C(10)—Fe—C(14)	90.8(2)	C(17) - C(18) - C(19)	118.9(4)		
C(9)—Fe— $C(14)$	89.27(19)	N(10) - C(19) - C(22)	109.7(4)		
C(13)—Fe—C(14)	177.19(19)	N(10)—C(19)—C(18)	106.8(4)		
C(11)—Fe—C(14)	89.3(2)	C(22)—C(19)—C(18)	111.0(4)		
C(3) - N(1) - C(2)	119.5(5)	N(10)—C(19)—C(21)	111.6(4)		

			续表	ĉ
C(3)—N(1)—Ni	119.1(4)	C(22)—C(19)—C(21)	109.8(5)	
C(2)—N(1)—Ni	107.5(4)	C(18)—C(19)—C(21)	107.9(4)	
C(1)#1—N(2)—C(5)	119.5(5)	N(12)#3-C(23)-C(24)	111.2(4)	
C(1)#1—N(2)—Ni	107.1(4)	N(11)—C(24)—C(23)	111.5(5)	
C(5)—N(2)—Ni	121.8(3)	N(11)—C(25)—C(28)	111.6(5)	
C(9)—N(3)—Ni	160.9(4)	N(11)—C(25)—C(26)	109.4(4)	
C(16)—N(9)—C(17)	116.0(4)	C(28)—C(25)—C(26)	111.8(5)	
C(15)#2-N(10)-C(19)	115.3(4)	C(25)—C(26)—C(27)	117.7(4)	
C(24)—N(11)—C(25)	115.5(4)	N(12)—C(27)—C(30)	109.5(5)	
C(23)#3—N(12)—C(27)	115.6(4)	N(12)—C(27)—C(26)	107.1(4)	
N(2)#1—C(1)—C(2)	111.8(5)	C(30)—C(27)—C(26)	110.8(5)	
N(1) - C(2) - C(1)	112.0(5)	N(12)—C(27)—C(29)	110.2(4)	
N(1)—C(3)—C(4)	112.6(5)	C(30)—C(27)—C(29)	111.6(5)	
N(1)—C(3)—C(6)	115.8(6)	C(26)—C(27)—C(29)	107.4(5)	
C(4) - C(3) - C(6)	116 9(6)			

Symmetry transformations used to generate equivalent atoms: #1-x, -y, -z; #2-x+1, -y, -z+1; #3-x, -y+1, -z+1.

No. 19

图 2 标题化合物的分子结构 Figure 2 Molecular structure of the title compound

图3 标题化合物的晶胞堆积图

Figure 3 Packing diagram of the title compound (view from *a*-axis)

由图 2 可见,标题化合物结构单元由 1 个 {[Ni(teta)][Fe(CN)₆]₂}⁴⁻阴离子、2 个[H₂(teta)]²⁺阳离子 和 17 个 H₂O 分子组成. {[Ni(teta)][Fe(CN)₆]₂}⁴⁻中 Fe 和 Ni 之间通过氰基桥联形成 Fe-Ni-Fe 三中心体系.每个 Fe 原子与 6 个氰基碳原子相连,为六配位八面体构型, 其中 1 个氰基利用其 N 原子与[Ni(teta)]²⁺中的 Ni 桥联, 其余 5 个为端基氰基. Fe—C 键长介于 0.1933~0.1942 nm 之间, Fe—C—N 近似为直线,键角介于 175.7°~

179.7°之间. 另外, 从表 2 可见, 桥式 CN 的 C-N 键长 (0.1133 nm)短于所有端式 CN 的相应键长,与 IR 结果一 致. [Ni(teta)]²⁺中的 Ni 为六配位八面体构型, 全部为 N 原子配位, Ni-N 键长介于 0.2067~0.2130 nm 之间, 其 中赤道平面上的4个N原子来自于 teta 配体, 键角 N(1) —Ni—N(1)#1, N(2)—Ni—N(2)#2 均为 180°, 键角 N(1) --Ni--N(2)为 95.05(18)°. 而在垂直于赤道平面的轴向 位上的两个氮原子分别来自于两个[Fe(CN)6]³⁻中桥联 氰基, N(3)—Ni—N(3)#1 为直线, 键角 Ni—N≡C 为 160.9(4)°, N(3)#1—Ni—N(2)为 85.15(17)°, N(2)#1— Ni-N(3)#1 为 94.85(17)°. Ni 原子处在对称中心, 故 $[Ni(teta)]^{2+}$ 中 Ni 的八面体只是略微畸变. 大环配体 teta 的结构参数与文献报道一致^[9]. 如图 2, 3 所示, 三核 Fe-Ni-Fe 体系中每个[Fe(CN)6]单元通过两个端基氰 基氮原子分别与两个[H2(teta)]²⁺中的 N—H 键形成 N… H-N 氢键, 而每个[H2(teta)]²⁺则以两个 N-H 键分别 与相邻的两个[Fe(CN)6]单元中的氰基 N 原子形成 N-H…N 氢键. 标题化合物中的氢键具体表示如下: N(9)—H(9NA) ···· N(8), 0.0861(10) nm; 0.210(3) nm; 0.2886(6) nm; 151(5)°; N(11)-H(11A)····N(6), 0.0863(10) nm; 0.221(2) nm; 0.3009(7) nm; 154(4)°.

图 3 为标题化合物沿 a 轴方向的俯视图,由图可见, 阴、阳离子 {[Ni(teta)][Fe(CN)₆]₂}⁴⁻, [H₂(teta)]²⁺间通过氢 键相连而形成交错排列的一维链,链与链之间则通过氢 键与[H₂teta]²⁺相连而形成二维平面结构,链内和链间的 两种[H₂(teta)]²⁺的空间取向不同.水分子填充于平面与 平面之间的空隙处,整个体系通过氢键而形成超分子化 合物.该超分子化合物中的阳离子[H₂(teta)]²⁺可能是由 [Ni(teta)]²⁺与溶液中的少量 H⁺离子反应而产生,其原因 有待进一步研究.

2.4 磁性质

标题化合物的变温磁化率(1.8~300 K)在 SQUID 仪上测定,外场为2000 Oe,其 $\chi_M \sim T$ 曲线见图4, $\chi_M T \sim T$ 及 $\chi_M^{-1} \sim T$ 曲线见图 5.

Figure 4 Plot of $\chi_{\rm M}$ vs. *T* of the title compound

图 5 标题化合物的 $\chi_{M}T \sim T$ 及 $\chi_{M}^{-1} \sim T$ 曲线 **Figure 5** Plots of $\chi_{M}T(\circ)$ and χ_{M}^{-1} (■) vs. *T* of the title compound

配合物在 300 K 时的 $\chi_M T$ 为 1.92 cm³•K•mol⁻¹ (有效 磁距 μ_{eff} =3.92 μ_B),该值较磁稀释 Ni (*s*=1)-Fe₂ (*s*=1/2) 单元对应的理论计算值 1.75 cm³•K•mol⁻¹ (μ_{eff} =3.74 μ_B) 稍大(计算值设 *g*=2.00). 当温度降低时, $\chi_M T$ 值随温度 的下降而升高,3 K 时 $\chi_M T$ 值达到最大,为 5.47 cm³•K•mol⁻¹ (μ_{eff} =6.61 μ_B),然后突然下降. 根据居里– 外斯定律 χ_M =*C*/(*T*- θ),利用 χ_M^{-1} ~*T* 数据在 150~300 K 范围内线性拟合得到外斯常数 θ =60 K,表明配合物 中存在强的铁磁相互作用.3 K 时 μ_{eff} (6.61 μ_B)比 NiFe₂ 三核体系发生完全铁磁相互作用的理论计算值(4.9 μ_B) 要高得多,说明化合物中除了三核内部存在铁磁相互作 用,三核单元之间还存在短程有序,这可能与化合物中 存在的氢键网络有关. $\chi_{M}T$ 值在 3 K 后的下降可归因于 零场分裂效应. 实验磁化率数据用下列 Fe (s=1/2)-Ni (s=1)-Fe (s=1/2)三核体系的磁化率方程拟合:

$$\chi_{\rm M} = \frac{2N_{\rm A}g^2\mu_{\rm B}^2}{kT} \cdot \frac{5 + \exp(-\frac{4J}{kT}) + \exp(-\frac{2J}{kT})}{5 + 3\exp(-\frac{4J}{kT}) + \exp(-\frac{6J}{kT}) + 3\exp(-\frac{2J}{kT})}$$

通过允许 g 和 J 值变化, 经最小二乘法拟合得到的 磁参数为 $J=4.33 \text{ cm}^{-1}$, g=2.6, 拟合因子 $R=3.6\times10^{-4}$ $[R=\sum(\chi_{3,3,3}-\chi_{3,3,3})^2/\chi^2_{3,3,3}]$, 如图 5 所示, 实线为拟合曲 线. 由 J>0 可知, 三核单元内存在铁磁相互作用.

图6 为标题化合物在低场10 Oe下的场冷却曲线和 零场冷却曲线,由图可见,两者几乎完全重合,没有磁 相变发生.图7 为标题化合物的*M*~*H*曲线,由图可见,

图 6 标题化合物的场冷却曲线(■)和零场冷却曲线(○) (10 Oe)

Figure 6 Thermal dependence of the field-cooled magnetization (FCM) and the zero-field-cooled magnetization (ZFCM) in a 10 Oe applied field H of the title compound

No. 19

该化合物的饱和磁化强度 M_s =4.5 Nβ, 较理论计算值 (4.0 Nβ)稍大, 其他文献中也有类似报道^[16], 其原因目 前尚不太清楚. 图 7 中未观察到明显的磁滞现象, 进一 步证实该化合物中虽然存在强的铁磁性相互作用, 但还 不能算是铁磁体.

References

- 1 Decurtins, S.; Schmalle, H. W.; Pellaux, R.; Fischer, P.; Hauser, A. Mol. Cryst. Liq. Cryst. 1997, 305, 227.
- 2 Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563.
- 3 Coronado, E.; Palacio, F.; Veciana, J. Angew. Chem., Int. Ed. 2003, 42, 2570.
- 4 Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593.
- 5 Ohkoshi, S. J.; Abe, Y.; Fujishima, A.; Hashimota, K. *Phys. Rev. Lett.* **1999**, *82*, 1285.
- Yuan, A.-H.; Shen, X.-P.; Yu, K.-B.; Lu, L.-D.; Zhou, W.;
 Zhong, J.-J. Acta Chim. Sinica 2003, 61, 1603 (in Chinese).
 (袁爱华, 沈小平, 郁开北, 陆路德, 周伟, 钟娟娟, 化学

学报, 2003, 61, 1603.)

- 7 Shen, X.-P.; Li, B.-L.; Zou, J.-Z.; Hu, H.-M.; Xu, Z. J. Mol. Struct. 2003, 657, 325.
- 8 Shen, X.-P.; Yuan, A.-H.; Wu, Q.-J.; Huang, Z.-X.; Xu, Z.; Yu, Y.-P. Chin. J. Chem. 2001, 19(6), 627.
- 9 Zou, J.-Z.; Hu, X.-D.; Duan, C.-Y.; Xu, Z.; You, X.-Z. Trans. Met. Chem. 1998, 23, 477.
- 10 Shen, X.-P.; Zou, J.-Z.; Li, B.-L.; Hu, H.-M.; Xu, Z. Chin. J. Chem. 2002, 20(12), 1472.
- 11 Huang, X.-C.; Zheng, S.-L.; Zhang, J.-P.; Chen, X.-M. *Eur. J. Inorg. Chem.* **2004**, 1024.
- 12 Colacio, E.; Doming-Vera, J. M.; Lloret, F.; Rodriguez, A.; Stoeckli-Evans, H. *Inorg. Chem.* **2003**, *42*, 6962.
- 13 Colacio, E.; Ghazi, M.; Stoeckli-Evans, H.; Lloret, F.; Moreno, J. M.; Pérez, C. *Inorg. Chem.* **2001**, *40*, 4876.
- 14 Hay, R. W.; Lawrance, G. A.; Curtis, N. F. J. Chem. Soc., Perkin Trans. 1 1975, 591.
- 15 Curtis, N. F. J. Chem. Soc. 1964, 2644.
- 16 Dong, W.; Zhu, L.-N.; Song, H.-B.; Lao, D.-Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P.; Gao, S. *Inorg. Chem.* 2004, 43, 2465.

(A0502188 SHEN, H.; DONG, H. Z.)