

溶剂热法制备 Bi₂S₃ 纳米材料

袁爱华^{*,1} 汪 萍¹ 潘 励² 周 虎¹ 马 卉¹ (¹江苏科技大学材料科学与工程学院,镇江 212003) (²江苏大学材料科学与工程学院,镇江 212013)

关键词:溶剂热法; Bi₂S₃;纳米材料 中图分类号:O611;TB383 文献标识码:A 文章编号:1001-4861(2006)03-0559-04

Bi₂S₃ Nanoflowers and Nanorods Synthesized by Solvothermal Method

YUAN Ai-Hua^{*,1} WANG Ping¹ PANG Li² ZHOU Hu¹ MA Hui¹ ('School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003) (²School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013)

Abstract: By using Bi $(S_2CNEt_2)_3$ as single-source precursor, Bi₂S₃ nanoflowers and nanorods have been obtained via a solvothermal treatment. The effect of water, ethylene glycol and polyethylene glycol as reaction medium on the structure and shape of Bi₂S₃ nanosized materials was investigated, and Bi₂S₃ nanoflowers and nanorods were characterized by SEM, TEM and XRD.

Key words: solvothermal treatment; Bi2S3; nanosized materials

0 引 言

纳米材料具有特殊的结构和性能,可广泛应用 于化学、物理学、电子学、光学、机械和生物医药学等 领域^[1-5]。其中一维或准一维纳米结构体系或纳米材 料的研究既是研究其它低维材料的基础,又与纳米 电子器件及微型传感器密切相关,是近年来国内外 研究的前沿^[6-9]。近年来,人们虽然做了许多尝试来 制备一维纳米结构材料,但合成这类材料特别是合 成半导体一维纳米材料仍然是一个巨大的挑战。随 着维数的减小,半导体材料的电子能态发生变化,其 光、电、声、磁等方面性能与常规体材料相比有着显 著的不同^[10-12]。

Bi₂S₂是一种重要的半导体材料,受到了很大的 关注。随着 Bi₂S₂的纳米化,不仅能引起吸收波长与 荧光发射发生蓝移,还能产生非线性光学响应, 并增强纳米粒子的氧化还原能力,具有更优异的 光电催化活性,在发光材料、非线性光学材料、光催 化材料等方面有着广泛的应用前景^[13-15]。本工作以 Bi (S₂CNEt₂)₃ 为原料,采用溶剂热法成功地合成了 Bi₂S₈ 纳米材料形貌的影响。

1 实验部分

1.1 前驱体 Bi(S₂CNEt₂)₃的合成及表征

取 4.85 g (0.01 mol) Bi (NO₃)₃ 用 25 mL 水溶解, 在搅拌下将 Bi (NO₃)₃ 的水溶液加入由 6.67 g (0.03 mol)二乙基二硫代氨基甲酸钠((C₂H₅)₂NCS₂Na⋅3H₂O) 溶于 60 mL 甲醇而形成的溶液,反应得黄色沉淀, 抽滤,所得产物分别用甲醇和水洗涤数次,自然干

收稿日期:2005-09-19。收修改稿日期:2005-12-06。 江苏省教育厅自然科学基金项目(No.04KJB150004)。 *通讯联系人。E-mail:aihuayuan@163.com 第一作者:袁爱华,女,37岁,副教授;研究方向:材料化学。

燥。产物的元素分析结果(实测值/理论值): C: 26.82 / 27.56; H: 4.13/4.59; N: 4.95/5.12; S: 24.44/23.39。 红外(IR)光谱,特征谱带[(cm⁻¹)]: 1 490[(C-N)], 983 [(C-S)]。

1.2 Bi₂S₃纳米材料的合成

由于在溶剂热环境下,纳米晶体的形态、大小受 溶剂、金属盐阴离子、反应温度、反应物的物质的量 的比等多种因素的影响,本工作采用单源前驱体溶 剂热合成法制备硫化物纳米材料,使前驱体的性质、 溶剂和反应温度成为主要的影响因素。

实验分为 4 组: 称取不等量的前驱体和表面活 性剂,加入到容积为 20 mL 的高压釜中,再加入 15 mL 的溶剂(加到高压釜 3/4 体积处),混合均匀,将高 压釜密闭,放入恒温炉中保温 6 h。保温结束后,使 高压釜自然冷却到室温。用高速离心机对高压釜中 混合物进行离心处理,移去上清液,将沉淀用水、乙 醇反复洗 5 次后,待乙醇溶液挥发至干燥,即得黑色 产物。实验分组及反应条件列于表 1。

表 1 实验分组及反应条件 Table 1 Groups of experiment and reaction conditions

	Bi (S2CNEt2)3 / g	Surfactant (periston) / g	Solvent	Reaction temperature /
а	0.5	0.5	Ethylene glycol	150
b	0.2		Ethylene glycol	150
С	0.2		Distilled water	150
d	0.2		Polyethylene glycol	200

1.3 测试分析

红外光谱测试采用美国 Nicolet 公司的 FT-1703X 傅里叶变换红外光谱仪(KBr 压片),测定范围 在 400~4 000 cm⁻¹; TG-DTA 曲线的测定采用美国 Perkin-Elmer 公司的 DSC-2C 示差扫描量热仪, 氮气 气氛, 气体流量 30 mL·min⁻¹, 升温速率 10 ·min⁻¹, 扫描范围: 室温至 650 ; 元素分析采用 Perkin-Elmer240C 型元素分析仪测定; 物相分析采用 D/ Max-RA 型 X 射线衍射仪进行, Cu 靶, K 为辐射 源, =0.154 06 nm, 扫描速度为 4 °min⁻¹, 靶电 40 kV, 电流 30 mA。透射电子显微镜(TEM, JEM-200CX) 观察 Bi₂S₈纳米材料的形貌和大小, 用无水乙醇做分 散剂, 超声波振荡 20 min 再测试, 钨灯, 加速电压 200 kV。

2 结果与讨论

2.1 前驱体 Bi(S₂CNEt₂)₃的热分析

Bi (S₂CNEt₂)₃的热分析在氮气气流中进行, 升温 速度 10 ·min⁻¹。Bi (S₂CNEt₂)₃的热重-差热(TG-DTA) 曲线如图 1 所示。Bi (S₂CNEt₂)₃在约 300 和 340 出现 2 个连续的失重台阶, 至 350 基本分解完全, 失重率为 59%, 这与分解产物为 Bi₂S₈ 所对应的理论 失重(60.5%)基本一致。

2.2 Bi₂S₃ 纳米材料的表征 2.2.1 Bi₂S₈ 纳米材料的 XRD 分析 将产物进行 X-射线粉末衍射(XRD)研究,结果

表明 4 种条件下所得产物均为正交相 Bi₂S。 图 2 是 a 组即以乙二醇为反应介质,以聚乙烯基吡咯烷

Fig.2 XRD pattern of Bi₂S₈ nanoflowers

酮为表面活性剂所制得的 Bi₂S₃ 纳米花的 XRD 图, 所有衍射峰均能被归属为正交相 Bi₂S₃(JCPDS: 17-320), 其晶胞参数为: a=1.1149 nm, b=1.1304 nm 和 c=0.3981 nm, 空间群为 Pbnm(62)。

2.2.2 Bi₂S₈ 纳米材料的 SEM、TEM 和选区电子 衍射分析

图 3~6 分别对应于 a, b, c, d 4 组反应所得产物 的 SEM、TEM 图和选区电子衍射花样(SAED)。由图 可知, 不同反应条件制得的 Bi₂S。纳米材料的形态各 不相同, 但均为单晶。

图 3 为 a 组产物的 SEM、TEM 图和 SAED 花 样,由图可看出,产品 a 由中心向四周长出尖状,呈 花样,尖状物长 50~150 nm,宽 20~30 nm,对应的选 取电子衍射花样表明 Bi₂S₈纳米花为单晶。

图 4 为 b 组产物的 SEM、TEM 图和 SAED 花

样,由图可见,b组产物也为纳米花,尖端长400~520 nm,宽20~40 nm。综合图3、图4结果可以得出如下 结论:以乙二醇作为反应介质,产物均为Bi₂S。纳米 花,没添加表面活性剂的一组(b组)尖状物长度是添 加表面活性剂一组(a组)的3~8倍,且长径比增大。

图 5 为 c 组产物的 SEM、TEM 图和 SAED 花 样,由图可见,c 组产物为纳米棒,长 600~800 nm, 端面直径 20~40 nm,c 组产物的选区电子衍射花样 显示其为单晶。

图 6 为 d 组产物的 SEM、TEM 图和 SAED 花 样,由图可知,d 组产物亦为纳米棒,长约 1.5 μm,端 面直径约 100 nm,电子衍射花样显示 d 组产物为单 晶。比较图 5 和图 6 可知,以聚乙二醇为溶剂和以水 为溶剂,产物均为纳米棒,但以聚乙二醇为溶剂的产物的长度和端面直径均要比以水为溶剂的产物大。

图 3 a 组产物的 SEM 图(a)、TEM 图(b 低倍图 c 高倍图)和 SAED 花样(d) Fig.3 SEM, TEM image and SAED pattern of group a

图 4 b 组产物的 SEM 图(a)、TEM 图(b)和 SAED 花样(c) Fig.4 SEM, TEM image and SAED pattern of group b

图 5 c 组分产物的 SEM 图(a), TEM 图(b)和 SAED 花样(c) Fig.5 SEM, TEM image and SAED pattern of group c

图 6 d 组分产物的 SEM 图(a)、TEM(b)和 SAED 花样(c) Fig.6 SEM, TEM image and SAED pattern of group d

3 结 论

(1) 以 Bi (S₂CNEt₂)₃ 为单源前驱体, 以乙二醇作 为反应介质, 用溶剂热合成法成功地制备了 Bi₂S₃ 纳 米花, 添加聚乙烯基吡咯烷酮表面活性剂有利于制 备小尺度的纳米花;

(2) 以 Bi (S₂CNEt₂)₃ 为单源前驱体, 以水作为反 应介质,用溶剂热合成法成功地制备了 Bi₂S₃ 纳米棒;

(3) 以 Bi (S₂CNEt₂)₃ 为单源前驱体, 以聚乙二醇 作为反应介质, 用溶剂热合成法同样得到了 Bi₂S₃ 纳 米棒, 但产物的长度和端面直径均要比以水为溶剂 的产物大。

参考文献:

- [1] Patzke G R, Krumeich F, Nesper R. Angew. Chem. Int. Ed., 2002,41:2446~2461
- [2] Morales A M, Lieber C M. Science, 1998,279(9):208~211
- [3] Da L M, Patil A, Gong X Y, et al. Chem. Phys. Chem., 2003,4: 1150~1169
- [4] Martin C R. Science, 1994,266(23):1961~1966

- [5] Banerjee S, Dan A, Chakravorty D. Journal of Material Science, 2002,37:4261~4271
- [6] Shen X P, Liu H J, Fan X, et al. Journal of Crystal Growth, 2005,276:471~477
- [7] Chen C C, Yeh C C, Chen C H, et al. J. Am. Chem. Soc., 2001,123:2791~2798
- [8] Shen X P, Liu H J, Pan L, et al. Chemistry Letters, 2004,33 (9):1128~1129
- [9] Hu J T, Odom T W, Lieber C M. Accounts of Chemical Research, 1999,32(5):435~455
- [10]Fang Y P, Xu A W, Song R Q, et al. J. Am. Chem. Soc., 2003, 125:16025~16034
- [11]Liu Z P, Peng S, Xie Q, et al. Adv. Mater., 2003,15(11):936~ 940
- [12]Yuan Z Y, Su B L. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004,241:173~183
- [13]Zhang W X, Yang Z H, Huang X M, et al. Solid State Communications, 2001,119:143~146
- [14]Xie G, Oiao Z P, Zeng M H, et al. Crystal growth & Design, 2004,4(3):513~516
- [15]Zhang H, Yang D, Li S Z, et al. Nanotechnology, 2004,15: 1122~1125