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Abstract. Three octacyanometallate-based hetero-bimetallic com-
plexes, [Ln(H,0)4(CH3;CN),][M(CN)g]-CH3CN [Ln = La, M = Mo(1),
W(2); Ln = Ce, M = W(3)], were synthesized and characterized struc-
turally. Single-crystal X-ray analysis reveals that 1-3 are isomorphous
and consist of infinite one-dimensional (1D) 3,3 rope-ladder chains,

in which the 12-membered puckered square LnyM,(CN), is the basic
building unit. The 1D chains are further linked through interchain hy-
drogen bonds, resulting in a three-dimensional (3D) supramolecular
network.

Introduction

In the past few years, octacyanometallates with higher coor-
dination numbers were intensively studied [1]. [M(CN)s]*"*
(M = Mo, W) ions, which act as a versatile class of building
blocks, can adopt three different spatial configurations, e.g.,
square antiprismatic (SAPR-8), dodecahedral (DD-8), and bi-
capped trigonal prismatic (TPRS-8), depending on their sur-
rounding, such as the coordination ligands, and the second
metal ions. Numerous octacyano- and transition-metal-based
complexes were synthesized and these materials produced var-
ious dimensional molecular structures and further displayed
exciting magnetism properties such as high Curie temperatures
[2], photo-magnetism [3], and single-molecule magnetism [4].

As lanthanide ions often have higher coordination numbers,
the combination of [M(CN)g]*"* with the lanthanide ions will
afford more complicated topologies and magnetic behaviors
than 3d—4d/5d compounds. However, the synthesis of such ma-
terials is still challenging owning to the tendency of the rare
earth metal ions to adopt high coordination numbers and their
ability to easily adapt to a given environment [5]. For instance,
Sieklucka et al. synthesized a family of two-dimensional (2D)
bilayered networks of the general formula Ln(H,O)sM(CN)g
(Ln = Eu, Tb, Sm, Gd; M = Mo, W) [5a, 5d] by the reaction
of [M(CN)g]*™ and Ln(NOs);nH,0 in the acetonitrile solution.
Among them, Tbh(H,0)sW(CN)g presents long-range magnetic
ordering and interesting luminescence.

More recently, using the above similar building-block meth-
odology, we have tried to employ [M(CN)]*~ (M = Mo, W)
and Ln(NO;);*6H,0 (Ln = La, Ce) as precursors to generate
MYLn™ heterometallic layered assemblies. To our surprise,
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three one-dimensional (1D) isomorphous complexes with 3,3
rope-ladder chain structure,
[Ln(H,0)4(CH3CN),][M(CN)g]-CH5CN [Ln = La, M = Mo(1),
W(2); Ln = Ce, M = W(3)], have been obtained. To the best
of our knowledge, octacyanometallate-based complexes with
the rope-ladder chain structure are rare [6, 7]. In addition, 1
and 2 present the first examples of bimetallic assemblies in-
volving octacyanometallates and La'" atom.

Results and Discussion
Structural Descriptions of 1-3

Single-crystal X-ray diffraction analysis reveals that 1-3 are
isomorphous and crystallize in the Pnma space group. The
crystallographic data collection and refinement parameters for
1-3 are summarized in Table 1. Selected bond lengths and an-
gles are listed in Table 2, 3, 4. Herein, only the structure of 1
is described in detail. In the structure of 1 (Figure 1), each
Mol atom has three bridging and five terminal cyano ligands
arranged in a slightly distorted square-antiprismatic fashion
(Figure 2 a), which is typical for [Mo(CN)g]*-based com-
plexes [8]. The Mo-C distances range from 2.146(6) to
2.181(4) A, and the Mo—C—N angles remain almost linear with
the maximum deviation from linearity of 4.1°.

The Lal atom exhibits a nine-coordinated environment with
three cyano nitrogen atoms, two nitrogen atoms from two coor-
dinated acetonitrile molecules as blocking ligands, and four
oxygen atoms from coordinated water molecules. The coordi-
nation around lanthanum is slightly distorted tricapped trigonal
prismatic with the capping position occupied by N3, N6, and
N7 (Figure 2b). The mean La—N and La—O bond lengths are
2.679 A and 2.539 A, respectively. Due to the large ionic radii
of the lanthanide(IIT) atoms, the cyanide bridges are exception-
ally long and the La—N—C bonds are strongly bent with the
angles ranging from 157.3(3)° to 164.7(4)°, opposition to the
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Table 1. Crystal data and structure refinement of X-ray data collection for 1-3.

Complex 1 2 3

Formula C]4H]7L3N|]O4M0 C]4H17L3.N] |O4W C]4H|7C€N1]O4W
M, 638.20 726.10 727.31

Crystal system orthorhombic orthorhombic orthorhombic
Space group Pnma Pnma Pnma

alA 25.342(4) 25.052(10) 25.021(5)
b/A 9.3626(13) 9.315(4) 9.287(2)

clA 10.0711(14) 9.959(4) 9.943(2)

al’ 90.00 90.00 90.00

VA3 2389.5(6) 2324.2(17) 2310.5(9)

VA 4 4 4

D, /g-em™ 1.766 2.067 2.082

u /mm! 2.329 6.801 6.962

GOF on F* 1.179 1.048 1.080

Ry, ©R, 0.0331, 0.0821 0.0306, 0.0680 0.0224, 0.0496
[ > 20(1)]

Ry, oR, 0.0343, 0.0827 0.0413, 0.0713 0.0271, 0.0511
(all data)

Table 2. Selected bond lengths /A and angles /° for 1.

Table 4. Selected bond lengths /A and angles /° for 3.

Mol-C1 2.181(4) Lal-N3!i 2.628(4)
Mol-C2 2.146(6) Lal-N6 2.654(5)
Mol1-C3 2.176(5) Lal-N7 2.685(6)
Mol-C4 2.165(4) CI-N1 1.153(5)
Mol-C5 2.160(4) C2-N2 1.137(9)
Lal-O1 2.529(3) C3-N3 1.135(7)
Lal-02 2.549(3) C4-N4 1.144(5)
Lal-N1 2.714(3) C5-N5 1.146(5)
Mol-CI-N1  175.9(3) Mol-C5-N5  176.7(4)
Mol-C2-N2  179.7(8) Lal-NI-C1 _ 157.3(3)
Mol-C3-N3  176.8(4) Lal-N3"_C3  164.7(4)
Mol-C4-N4  178.6(4)

Symmetry code: (iii) —x, -y, —z

WI1-Cl 2.164(5) Cel-N3 2.677(3)
WI1-C2 2.165(4) Cel-N6 2.651(5)
W1-C3 2.174(4) Cel-N7 2.614(4)
W1-C4 2.139(6) CI-NI 1.140(6)
W1-C5 2.157(4) C2-N2 1.147(5)
Cel-O1 2.495(2) C3-N3 1.144(5)
Cel-02 2.525(3) C4-N4 1.148(8)
Cel-N1 2.596(4) C5-N5 1.143(5)
WI1-C1-N1 174.9(4) W1-C5-N5 177.2(3)
WI-C2-N2  176.7(3) Cel-NI-C1  162.0(4)
WI-C3-N3  176.9(3) Cel-N3-C3"  157.9(3)
WI-C4-N4  177.3(7)

Symmetry code: (ii) —x, -y, —z.

Table 3. Selected bond lengths /A and angles /° for 2.

Wi1-C1 2.174(5) Lal-N3ii 2.608(6)
W1-C2 2.160(7) Lal-N6 2.626(7)
W1-C3 2.157(7) Lal-N7 2.672(7)
W1-C4 2.166(5) C1-N1 1.144(6)
W1-C5 2.155(5) C2-N2 1.150(9)
Lal-O1 2.516(3) C3-N3 1.147(9)
Lal-02 2.548(4) C4-N4 1/146(7)
Lal-N1 2.698(4) C5-N5 1.147(7)
WI1-C1-N1 177.6(4) W1-C5-N5 176.8(5)
WI1-C2-N2 179.1(6) Lal-NI-C1 _ 157.1(4)
WI1-C3-N3 174.4(6) Lal-N3"_C3  162.3(5)
W1-C4-N4 176.4(5)

Symmetry code: (iii) —x, —y, —z.

linear Mo—C—N unit. The metric parameters of the Ln atom
are in agreement to those observed in other octacyanomolyb-
date(V)- and lanthanide(IIT)-based complexes [Sa, 5d].

As a result, the lanthanum and molybdenum atoms are linked
in an alternating fashion to form a neutral 1D infinite 3,3 rope-
ladder chain running parallel to the b axis (Figure 3), in which
12-membered puckered square with the Ln and tungsten atoms
in the corners and the —CN- linkages on the edges,
La,Mo0,(CN)y, is the basic building unit. Each unit cell has
two equivalent chains and the nearest interchain distances for
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Figure 1. ORTEP diagram of 1, showing the 30 % probability thermal
motion ellipsoid. Hydrogen atoms and disorder solvent acetonitrile
molecules were omitted for clarity. Symmetry codes: (i) x, —y + 1/2,
z; (i1) x, =y — 1/2, z; (iil) —x, —y, —=z.

Mo+Mo and Mo-~La are about 9.409 A and 6.988 A, respec-
tively. This rope-ladder chain structure was also observed in
the hexacyanometallate-based bimetallic system
[Ni(en),]5[M(CN)s],-nH,0 (M = Cr, Mn, Fe, Co) [9]. It should
be mentioned here that there are only three examples of this
structural type were found in octacyanometallate-based com-
plexes, [Cu(cyclam)];[M(CN)gl,*SH,O (M = Mo, W) [6] and
{Cs[Sm(MeOH);(DMF)(H,0)Mo(CN)gH,0},, [7].
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(b)

Figure 2. Coordination environments of (a) molybdenum, and (b) lan-
thanum atoms in the structure of 1. Symmetry codes: (i) x, —y+1/2, z;
(i) x, =—1/2, z; (ii1) —x, -y, —z.

Figure 3. Projection of the 1D 3,3 rope-ladder chain structure for 1
running along the b axis. Hydrogen atoms and disorder solvent acetoni-
trile molecules were omitted for clarity.

Five terminal cyano ligands coordinated to the molybdenum
atom and four water molecules coordinated to the lanthanum
atom are involved in hydrogen bonding. Each {La"™Mo"}
chain strongly interacts through hydrogen-bonding interactions
[O1-HIA-N5" = 2.814(5) A, O1-HIB-N2 = 2.946(5) A,

Figure 4. The 3D supramolecular network constructed from interchain
hydrogen bonds of 1. Disorder solvent acetonitrile molecules were
omitted for clarity.
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02-H2A-N4" = 2.901(5) A; symmetry codes: (iv): —x+1/2,
=y, z—=1/2; (v): x, y, z—1.] with six other surrounding chains to
form a 3D supramolecular network (Figure 4).

Conclusions

Three isomorphous octacyanometallate-based complexes
[Ln(H,0)4(CH3CN),][M(CN)g]-CH;CN (Ln = La, M = Mo(1),
W(2); Ln = Ce, M = W(3)) were synthesized and structurally
characterized. Single-crystal X-ray diffraction analysis re-
vealed that 1-3 consist of 1D 3,3 rope-ladder chains, which
are further linked through interchain hydrogen bonds, resulting
in a 3D supramolecular network.

Experimental Section

Materials and General Methods: All chemicals were of analytical
grade and were used without further purification. The precursors
[HN(n-C4Hog);]3[M(CN)g]-4H,O (M = Mo, W) were prepared accord-
ing to the published procedure [10]. Caution! The reactions must be
carried out under low light conditions because [M(CN)g]>~ precursors
are readily photo-reduced to [M(CN)g]*".

[Lr(H,0)4(CH;3CN),] [M(CN)g]-CH3CN: [Ln = La, M = Mo(1), W(2);
Ln = Ce, M = W(3)]. Single crystals of 1-3 were prepared at room
temperature in the dark by slow diffusion of an acetonitrile solution
(3 mL) containing both Ln(NO3);:6H,O (Ln = La, Ce) (0.05 mmol)
into an acetonitrile solution (15 mL) of [HN(n-
C4Hy)3]5[M(CN)g]-4H,0 (M = Mo, W) (0.05 mmol). After two weeks,
block-shaped yellow crystals were obtained. The crystallized samples
of the title complexes (1-3) were very easy to pulverize to powder,
with a color change from yellow to orange after they were removed
from the mother liquor and exposed in air. The powder X-ray diffrac-
tion patterns (Figure 5) of the powder samples for 2 and 3 corre-
sponded closely with that simulated from the structure of the two-
dimensional layered complex Sm(H,0)sW(CN)g reported previously
[51], indicating that the these complexes were isostructural with closely
similar framework geometries, and the phase transformation occurred
after 1-3 were removed from the mother liquor. Based on above rea-
sons, the samples of the title complexes used to other experiments (for
example, IR and magnetic measurements) are very difficult to obtain.
We have taken the following method when the single-crystal X-ray
diffraction was performed: as soon as the well-shaped single crystals
of 1-3 were removed from acetonitrile, it was immediately introduced
into a glass capillary having an open end and fixed. Afterwards, the

CeW powder

LaW powder
‘ Sm(HZO)sz(CN)a simulated

10 15 20 25 30 35 40 45 50
2 theta /°

Intensity /a.u.

Figure 5. The powder X-ray diffraction patterns of LaW powder and
CeW powder samples, compared to that simulated from the single
crystal data of Sm(H,0)sW(CN)g.
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capillary was soon filled with the mother liquor, and sealed for single-
crystal X-ray structure determination at 295(2) K.

X-ray Crystallographic Analysis: Single crystal X-ray diffraction
measurements for 1-3 were carried out with a Bruker APEX II diffrac-
tometer equipped with Mo-K,, (2 = 0.71073 A) radiation. Diffraction
data analysis and reduction were performed within SMART, SAINT,
and XPREP [11]. Correction for Lorentz, polarization, and absorption
effects were performed within SADABS [12]. Structures were solved
using Patterson method within SHELXS-97 [13] and refined using
SHELXL-97 [14]. All non-hydrogen atoms were refined with aniso-
tropic thermal parameters. The hydrogen atoms of coordinated acetoni-
trile ligands were calculated at idealized positions with C-H = 0.96 A
and included in the refinement in a riding mode with Ui, for H as-
signed as 1.5 times Uy of the attached atoms. The hydrogen atoms
bound to coordinated water molecules were located from difference
maps and refining (O-H = 0.85 A), with Uj,(H) = 1.5U4(0). All
atoms of solvent acetonitrile molecules are disorder over two crystallo-
graphic positions with the occupancies of 25 % and 75 %, respectively.
The hydrogen atoms of these disordered acetonitrile molecules are not
found. CCDC-760629 (1), CCDC-760630 (2), and CCDC-760631 (3)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from the Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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